Ref . R&D-SOC-NT-292-V-ASTR

astrium SCOC I3 Suoeres

Page i

SPACEWIRE IP CORE
SPECIFICATION AND ARCHITECTURE

Name and Function Date Signature

Tam LE NGOC
Prepared by

Verified by
Marc LEFEBVRE

Approved by

Marc SOUYRI
Authorised by
Document type Nb WBS Keywords
Wockh 1308 © Astrium

FileName SW_SPEC_ARCHI_02.DOC

Ref . R&D-SOC-NT-292-V-ASTR

astrium SCOC I3 Suvermes

Page i

DOCUMENT CHANGE LOG

ISS‘.U?/ Date Modification Nb | Modified pages Observations
Revision
0/0 Creation
0/1 01/04/03 14,20,21,22 Adding error response and

error interrupt if the TX
AHB slave is accessed
when the link is not
connected.

Suppression of the "shall".
0/2 03/04/03 34,20 Adding TX clock selection.

Adding complete packet
reception interrupt.

Adding AHB FIFO full
status.

PAGE ISSUE RECORD

Issue of this document comprises the following pages at the issue shown

Issue/ Issue/ Issue/ Issue/ Issue/ Issue/
Page Page Page Page Page Page
Rev. Rev. Rev. Rev. Rev. Rev.
all 0/0
all 0/1
all 0/2

CharNb 63422

WordsNb 12475 mstri u m

FileName SW_SPEC_ARCHI_02.DOC

Ref :R&D-SOC-NT-292-V-ASTR

astrium SCOC o Simtines

Page :3
TABLE OF CONTENTS

T SCOPE.......oooiiiiiiiiii 7
2 Documents and ACLONYINIS.................cccvviiiiiiiiiis i 8
2.1 Applicable dOCUMENEScoiuiiiiiiiiiiii e 8
2.2 J A0S (S s LTl (Y ent ba o U= o L 2= T 8
2.3 ACIONYIMIS ..ottt s 8
3 Functional deSCIPION........................c.covuiiiiiiiiiii i 9
31 global functionality deSCIIPtiONcoiiiiiiiiiiiii 9
3.1.1 Description of the different BIOCKS ..ovviiiiiiiiiiiiii i 9
3.1.2 Introduction Of the INtEITACES iivivueiiiiiiie e e et e e s et e e s et e e e s e s e s e rbneeseranas 9
3.1.3 a1 A T L2 Y Lo o W 10
3.1.4 TTANSINISSION FUNCHON t1vvttitieeeeiiettti e e e e e eee ettt eeesseesseesaba s s eesssessbb s seesssesbaaasseeesaesssraaneees 10
3.1.5 Reception fUNCHON 1vviiiiiiiiii i 10
3.2 functional mode desCriptionccoviiiiiiiiiin i 11
3.3 Detailed functionality desCriptionccocooiiiiiiiiiiiiii 12
3.3.1 TX clock PrOGIAMMING.....viiiiiiiiiiii i 12
3.3.2 TX Host Interface (THI) ..oviiiiiiiiiieiieneeree e nnee 12
3.3.2.1 0D G B LY N 5’ Vo Y [N 12
TG 2 B Q) V- v/ o's Lo Y [T U U TT 13
333 RX Host Interface (RHI) ..ocoviiiiiiiiiiiiiiiiiiii i 14
3.3.3.1 The format of the StOrage ...covviiiiiiiiiiiiiiii 14
3.3.3.2 The functionality of the RHIcccoviiiiiiiiiiiiii 16
3.3.3.3 Reaching the End_Packet Addressococvviiiiiiiiiiiiiiiiiii i, 17
3.3.3.4 Reaching the End_Area Addresscoovviiiiiiiiiiiiiiiiiiii e, 17
3.3.3.5 AHB CITOT OCCUITEIICE 1uuviieiiiiiittiiseeeeeteettieeseee sttt st s eeseesaestt e raseesstesrtbasreeesessssrranreess 18
I TRC J0G TN T LV A v (ol I 18
3.3.4 Format of the words stored in the TX and RX FIFOS:ccuuuieiiiiiiiiiiiiiiieeeeesieeviiinsseenaees 18
3.3.5 THE INEELEUPES 1vtsvie sttt sttt bbb bbb e b bbb 18
3.3.6 Time Code transmission and feCEPLON ..uvviiiiiiiiiiin i 19
3.3.7 1 TSR o Vo Ye [P TT 19
3.4 Internal register deSCIIPIONcciiiiiiiiiiiiii i 20
3.4.1 Global deSCLiPHON vivviiiiiiii i 20
3.4.2 Detailed deSCription....ciiiiiiiiiiiiiiiiii i 21
3.5 Interface deSCHPLiONccoiiiiiiiiiic 28
3.5.1 CLOCKS, tESt AN TESEE 1eeereiiirirriereeesieiiitirreeeeeessssitbrrreeeeessassbbrreeeaeessasstbaseeeeesssassrraeneeeens 28
3.5.2 AN o SR LT s 2 Yol IR 28
3.5.3 TX AHB MaSter ITEITACE coviieiiiieitii i e e e e e ettt s e e e e ettt s e e e e e seee s e s eeessesbbaereessaeesarareees 28
3.54 TX O AHB SlaVE It A ttutiiiieiieitiie et e e e ettt e e e e e s ettt s e e e ee st et s e s eessees bbb s eeeseresabareees 29

Ref :R&D-SOC-NT-292-V-ASTR

astrium scoc ssue Qo2 s

Page :4
3.5.5 RX AHB Master INtEIFACE couvrrririieeiiiiiiiiiieie e e e e e st e e e e e s s s sbbrre e e e e e s s e ssbbbe e e e e eeessenaaaraereeeeeas 30
3.5.6 T T Nircs 5 22 T TR PRSP 30
3.5.7 BT o1 N s 22Tl PSPPI 30
358 INEELIUPE INLEITACE i iviiiiiiii i 30
I T (1) 17T 17 T - SRR SRP 31
5 Architecture deSCIIPHION....................cccvoiiiiiiiiiiiii s 32
5.1 Description Of the IESEt tIEEScccviiiiiiiiiiiiiiiiiie s 33
5.2 Blocks working at TX ClocK........ccociiiiiiiiiiii i 34
5.2.1 CLEK _UTX_GEN DBLOCK . 111t tttttttttutururesereresssssessrerersrerssssessresssseerereree.—.—.—.———. 34
5.2.2 B I T 0N oY 1 Yo 34
5.2.3 0 G 1 0 i B 2 Y N oY oY, 34
5.2.4 [0 G Y o) Y O I o) 1o Yoo 35
5.2.5 TX CNT BLOCK toie i e it ——— 36
5.2.6 TX L ACK BIOCK 1ttt 36
5.2.7 TX _RESYINC BlOCK ctiiitii i 37
5.3 Blocks working at RX ClocK.........ccccoiiiiiiiiiii i 38
5.3.1 RX_SHIEFTREG DLOCK 1uvtttvtttttttiitetesssesesssssssssssesssssssssessressssssrsrssssesererms.. 38
5.3.2 RX_UIDDECOIDD BlOCK .1t ttttttutvuteterurerererersreresssessrersrsrerersressreseserererere..—.———————————————. 39
5.3.3 RX_CRESYINC BIOCK 11ttttttvttittiiiiieietesssesesssssessreressreressssseressssesrersrereserer.. 40
5.3.3.1 DISCONNECTION BIOCK ...uvieitiiiitiieiitieaitieesieesstreesseesteeessseessseeessneessseessssessnsessnnns 40
5.4 Blocks working at system ClOCK............ccooiiiiiiiiiiiiii 41
5.4.1 B BN 8 S S 11 B oY 16 Yoo PPN 41
5.4.2 DELAY _CNT BLOCK t1etttiiitiieiiee ittt stte e s stteesteeste e s stte s staeestaeessteesstaeessseestseessseesssseessees 42
5.4.3 RX . IMGT BLOCK trttttvtttteutsesssesesesssesesssssssssssssssessrssssnnnnns 42
5.4.4 |2 G S 1 S 2 oY oY o1 PPN 43
5.4.5 100 G 21 1 2 N) o Yol 43
5.4.6 AHB_FIFO BIOCK i iiii e 43
5.4.7 1D QLY (8 N) 1o Yol < 44
5.4.8 SW_COUNTERS BIOCK 1..tttiiiiieiiiie it siie e steeestte e ste e s stae e saeestee e snve s s snaeessneesnteessaneesnseeans 45
5.4.9 SW_RESYINC BIOCKttteittteiitiieiieeiteeesiteesteeesteeessteesstseessaeeasesssssessssssesssssssessssnessnseeans 46
5410 SW_RIEG BlOCK cttiiiiiitiieeiiitieeeeiitiee e eette e e sitte e e s eetbee e s e etbe e e e s etbeeesenbbeeessbbeeessatbeeesssbeeesensres 47
5.4.11 AN S 05 T 0 G 1\ R o) 1o Yoo 49
5.4.12 AN S 1S T\Y N SN DAV 15 G o) 1o Yoo 51
5.4.13 AHB_MST RX BIOCK 1tiiiiie e 56
5.5 Block working at input TX clocK.........ccccviiiiiiiiiiiiiiiiii i 60
5.5.1 CLEK _UTX_GEN DLOCK . 111t tttttttttuutruseresesesssssessrerersssssssseseresessssrererse.—.———.———.———. 60

Figure 3.1.1-1 global desCription.......ccviiiiiiiiiiiii e s 9

Ref :R&D-SOC-NT-292-V-ASTR

astrium scoc ssue Qo2 s

Page :5
Figure 3.3.3-1 StOrage fOIMAL......ccviueviuciiieciiciiciciei et 15
Figure 3.3.3-2 RX SEOTAZE ...cvviuiiiiiiieiiniiciis st 16
Figure 3.3.4-1 FIFO Word fOrMAatccvviiiiiiiiiiiiiii it sss e 18
Figure 3.5.8-1 global architeCture......oviiiiiiiiiiiii e 32
FIgure 3.5.8-1 RESEE TIEES cu.vvviriuiririiitircttececi sttt 33
Figure 3.7.2-1 TX Shift fEZISELS ...cuviiuiiiiiiiiiciirircc bbb 35
Figure 3.7.6-1 RX cloCk GENEIAtIONuiiiiiiiiiiiicicicci st 38
Figure 3.8.1-1 RX Shift TEZISELS ...oviiiuiiiiiiiiiiiriiciciic bbb 39
Figure 3.9.7-1 FCT SeNd fUNCHON w..vvrieiieiieeeicieectie ettt ettt sese e neaes 45
Figure 3.9.11-1 AHB_TX_INT FSM ..ottt ettt esese s sese s asesessesensnaes 50
Figure 3.9.12-1 TX HOSt INTEITACEvuiviieciiceicccce ettt 52
Figure 3.9.12-2 AHB master FSMcccoiiiiiiiiiciiicii et 53
Figure 3.9.12-3 AHB S1ave FSMoiiiiiiiiiicici s 55
Figure 3.9.13-1 RX HOSt INTEITACEviviiiiiiiiciicct sttt 56
Figure 3.9.13-2 Concatenation FSM.......cccviiiiiniiiiiiiiiiiiis s ssees 57
Figure 3.9.13-3 RX AHB master FSM ..ot sssssssees 58
Figure 3.10.1-1 TX clock GENEration......cccviiviiiiiiiiiiciiiiii st 60
LIST OF TABLES
Tableau 3.3.2-1 HnKed LSt CLEMENT cuvuvveveuiiririieieireeecieieirecieietstreseiete ettt ettt ettt ses bt sneneee 12
Tableau 3.3.3-1 PaCKEt fOIMAt...cevrieieieiriiicieirireeeieirtceieteseeie ettt bbbt ssesessaebesseneasencs 14
Tableau 3.3.4-1 Word MEANINGcvviiiiiiiiiiii e nns 18

Tableau 3.9.1-1 State SIGNITICALION ...ovuiueieeiiieeiicre ettt saes 42

astrium

SCOC

Ref

Issue
Date
Page

:R&D-SOC-NT-292-V-ASTR
:Orev. 2

: 18/06/2003

16

PAGE INTENTIONALLY LEFT BLANK

astrium

SCOC

Ref

Issue
Date
Page

:R&D-SOC-NT-292-V-ASTR
:Orev. 2

: 18/06/2003

7

1 SCOPE

The present document is written in the frame of the ESA 13345/#3 contract " Building block for System
on a Chip". It is part of Phase 3 of the contract related to the design of a System On a Chip for Space
application. The present activity concerns the design of a Spacewire VHDL core to be integrated in the

System On a CHip.

The present document describes the SpaceWire block developed as part of the ScoC project. This
document contains the specification and the architecture of the block. The SpaceWire is a serial high
speed link compliant with the ECSS-E-50-12 Draft 1 specification (AD11) delivered by ESA. For the

SCoC project, the SpaceWire block (SWB) also contains AHB and APB interfaces.

astrium scoc

Ref :R&D-SOC-NT-292-V-ASTR
Issue :Orev. 2

Date :18/06/2003

Page :8

2 DOCUMENTS AND ACRONYMS

2.1 APPLICABLE DOCUMENTS

ADS SCOC Requirement Specification

AD9 AMBA™ Specification
AD10 Spacecraft Controller On a Chip Architectural Design Document
AD11 ECSS-E-50-12 Draft 1 (ESA SpaceWire Specification)

2.2 REFERENCE DOCUMENTS

RD21 System-On-a-Chip Feasibility Study

RD22 Spacewire IP Core Hardware User Mannal

2.3 ACRONYMS

AD Applicable Document

APB Advanced Peripheral Bus

AHB Advanced High-Performance Bus

DMA Direct Memory Access

ESA European Space Agency

ESTEC European Space Research and Technology Centre
FPGA Field Programmable Gate Array

FSM Finite State Machine

HKPF Housekeeping Function

HKAPB Housekeeping Advanced Peripheral Bus

IEEE Institute of Electrical and Electronics Engineers
IT Interrupt

LVDS Low Voltage Differential Signals

SCoC Spacecraft Controller on a Chip

SWB SpaceWire Block

RD Reference Document

RHI RX Host Interface

SOC System-On-a-Chip

THI TX Host Interface

R&D-RP-SOC-214-MMV, Issue 2,
June 2000

Rev 2.0, ARM IHI 007114
Draft
March 2001

December 99, Issue 2, R&D-RP-
SOC-154-MMV

December 2001, Issue 0, R&D-
SOC-NT-295-V-ASTR

Ref :R&D-SOC-NT-292-V-ASTR

astrium scoc ssue Qo2 s

- } TICKIN
|
|

Page :9

3 FUNCTIONAL DESCRIPTION

3.1 GLOBAL FUNCTIONALITY DESCRIPTION
I, Commands tosend characters |
: pata o % // D Data to send <« | T™DATA | M
| Strobe out // ‘ Acknowledgement FIFO LT
| _ g HosT [meiae)
| TX clock INTERFACE | | ™
! |
| programmation !

Max TX] clock input | TX clock generator -« SW ™ RXFII?:'E\)TA > ‘AHB ’\;;STER
T il |
e N s)
}) Type of character received _lm&
! Datain > |Nominal Interrupt
|] RX Data received _ _?—&
M, Acknowledgement " I>

i TICKOUT
I

I SPACEWIRE BLOCK (SWB) |

Clock Domain : % TX clock |:| Input TX clock
I:I RX clock I:I system clock

Figure 3.1.1-1 global description

The SWB is a high-speed serial link to transmit and receive packets of data (refer to AD11).

3.1.1 Description of the different blocks

The Host Interface block is an interface with the AMBA AHB and APB buses. It contains the

management of the data sent by the host. It manages the storage of data into the host memory.
The TX Data FIFO block is a FIFO containing the data to be transmitted.
The RX Data FIFO block is a FIFO containing the data to be stored into the host memory.

The SW block manages the initialisation protocol. This block selects the character to be transmitted and

checks any error occurrence.
The TX block sends the character at the transmission frequency.
The RX block identifies the received character type.

The TX clock generator block generates the clock transmission rate.

3.1.2 Introduction of the interfaces

The basic interface contains clock, test and resetn signals.

The APB interface is used to configure the SWB and to retrieve statuses.

The TX AHB master interface performs the TX DMA.

The TX AHB slave interface is used when the data transmission is in charge of the host.
The RX AHB master interface performs the storage of received data into the host memory.

The link interface brings together the data and strobe signals of the transmission and the reception.

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :10

The Time interface manages the transmission and the reception of time code.

The Interrupt interface is used to warn the host when a specific event appears.

3.1.3 Link initialization

Refer to AD11 chapter 8.7.

3.1.4 ‘Transmission function

The SWB receives packets of data from the host through the AHB interface. Two modes are possible for
this data transfer. The first one is the AHB master mode, which performs the transfer with a DMA
mechanism. With the descriptor of a linked list of packets given by the host, the SWB retrieves 32-bit data
of each packet of the linked list. The second one is the AHB slave mode. In this mode, the host transfers
the length of the packet and the 32-bit data of the packet to the SWB.

Then the 32-bit data received from the host is split to 9-bit data to be stored into the TX data FIFO. The
9-bit data is composed of 8 bits of real data and 1 bit for particular character such as EOP and EEP
(refer to AD11).

When the credit counter is positive (refer to AD11), the SW module fetches the 9-bit data in the TX data
FIFO and sends it to the TX module with the right command to transmit this data. When the RX data
FIFO free space allows the reception of 8 more bytes, the SW module generates an order to transmit a
FCT. To transmit a time code, the TICKIN signal is activated so that the SW module generates the right

transfer.

When the TX module receives a command from the SW module, an acknowledgement is generated. Then
the character corresponding to the command is transmitted through the LVDS link (Data and Strobe
outputs). The TX module automatically transmits NULL characters (refer to AD11) when no other

transmission is requested.

The transmission frequency is programmable through the APB interface. The TX clock generator creates

the required TX frequency, which can be up to 4 times the system clock frequency.

3.1.5 Reception function

The RX module performs the recognition of the received character type. The RX clock is built from the
data and strobe input signals (refer to AD11). The RX module also indicates the received characters to the
SW module.

Each time that information of character type is received from the RX module, the SW module generates
an acknowledgement. Then, following the received character, the SW module manages the credit counter
and the outstanding counter. A 9-bit word is stored into the RX data FIFO when a data is received. The
SW module also activates the TICKOUT signal when a right time code is received.

When the RX data FIFO is not empty, the host interface fetches its 9-bit data. Each time four 9-bit data
are available, the host interface produces a 32-bit word from these four 9-bit data and stores it into the

host memory through the AHB bus (master mode).

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :11

When any error is detected from the AHB transfer or from the transmission link, the SWB generates an

error interrupt to warn the host. The SWB also produces a nominal interrupt to improve the monitoring.

The configuration of the SWB is done through the APB interface.

3.2 FUNCTIONAL MODE DESCRIPTION
Refer to the state diagram of AD11 chapter 8.5.
The SWB supports the following functional modes:
e RESET mode (resetn=0):
0 TX and RX blocks are inactive
O Host interface is inactive
e ACTIVE mode (tesetn=1):
0 TX block is inactive and RX block is active (when entering the ACTIVE mode)
O Host interface is always on

The transition of the TX and RX states in the active mode is specified by the link initialisation protocol
described in AD11.

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :12

3.3 DETAILED FUNCTIONALITY DESCRIPTION

3.31 TX clock programming

The FREQ_INIT register configures the frequency in the initialisation state.

The FREQ_RUN register configures the frequency in the run state.

For the gated TX clock configuration (see 5.2.1), when the TX_MAX_ EN bit is asserted, the

FREQ_RUN register value is not taken into account and the transmission frequency is equal to the input

TX clock frequency.

It is recommended not to change the FREQ_INIT and FREQ_RUN registers values when the
spacewire link is in the RUN state.

See the internal register description paragraph for details.

3.3.2 TX Host Interface (THI)
For the TX function, the SWB has 2 AHB interfaces:

e The master interface allows DMA transfer from the memory (or any other slave on the AHB bus)

to the SpaceWire.
e The slave interface allows direct writing of data by an AHB master to the TX.
These interfaces are exclusive and the selection of the active interface is performed through the APB.
3.3.21 TX DMA mode

When the SpaceWire is in the TX DMA mode, the host is able to transmit a linked list of packets. The

format for an element of the linked list is depicted hereafter:

Size of the packet (16 least significant bits, in bytes)

Address of the first packet data (word aligned)

Address of next linked list element (word aligned)

Tableau 3.3.2-1 linked list element

Writing the address of the descriptor list in a configuration register through the APB slave launches the
DMA transfer. By knowing the size of the first packet by reading at this address, the SWB can reach the
first data of the packet by reading at next address. With the size of the packet and the address of the first
data, the SWB can fetch all the data of the packet. The SpaceWire can perform the same task for the next
packet of the linked list. To end the linked list, the last element has a null value in its third field.

The THI makes single transfer on the AMBA AHB to retrieve the 32-bit data from the host.

For the last retrieved data corresponding to the current packet, the THI is able know the number of its

valid bytes (this number depends on the packet size). In detail, considering that the data retrieved is

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :13

DAT(31:0), if 1 byte is valid, it will be DAT(31:24), if 2 bytes are valid, they will be DAT(31:24) and
DAT(23:16) and so on...

The SWB inserts the End Of Packet (EOP) control character at the end of each packet.

If the retrieved packet size is null, the THI will skip the data retrieval process and looks for the next
packet in the list.

The THI fetches and deliver all the data rapidly enough to keep the maximum data transfer rate (i.e.
avoiding NULL character insertion : NULL character insertion must not be a consequence of the THI

management of the AHB).
The TX DMA mode is only effective when the packet contains a big number of bytes.

In the worst case, the packet only contains 1 data byte. In this case, the THI has to perform 4 AHB accesses to fetch the
data byte (1 access for the packet size, 1 access for the data address, 1 access for the data and 1 access for the next linked list
element). Only 1 out of 4 accesses is used to retrieve the data, so NULL character insertion is inevitable. So for small
packets, the host shonld nse the 1X slave mode to be effective.

If TX slave access is performed during TX DMA mode, the TX slave block will activate the
WRONG_MODE interrupt and an AHB error response is delivered.

The host can monitor the progression in the linked list of packets by reading the descriptor register.

The transfer is aborted by asserting the ABORT_PACKET bit. The THI adds an EEP into the TX FIFO
and erases the cutrent data received from the host. The host should launch a new TX DMA only after the
ABORT_PACKET auto-reset i.e. after the end of the abortion process.

If the THI receives an AHB error response, the TX DMA will stop retrieving data.
To restart the TX DMA after an AHB error reception, the host activates the ABORT_PACKET bit of

the management register in order to propetly end the current packet transmission. After the autoreset of
the ABORT_PACKET bit, the host can launch the TX DMA again.

3.3.2.2 TXsslave mode
The TX AHB slave interface doesn't take care of the input addresses.

After reset, the first 32-bit data sent by the host to the THI is the 16-bit size of the packet it wants to
transfer (only the 16 least significant bits of the data are taken into account). The size is in bytes. If the
THI receives a null packet size, it will not take it into account and will expect to receive another packet

size.

Then the host can deliver the data corresponding to this packet. The SWB considers the received data as
belonging to the current packet as long as the corresponding byte number does not reach the packet size.
Each 32-bit data contains 4 valid bytes, the last 32-bit data contains at least 1 valid byte. Each byte is
stored into the TX FIFO.

When the packet size is reached, the THI adds an EOP into the TX FIFO and expects to receive the size
of the next packet.

The TX slave is able to accept burst transfer.

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :14

The host can stop the current packet transfer by asserting the ABORT_PACKET bit. When this bit is
asserted, the THI adds an EEP into the TX FIFO and erases the current received data. The host should
access to the TX slave only after the ABORT_PACKET auto-reset ie. after the end of the abortion

process. The next data received from the host is regarded as the size of the next packet to transmit.

When the TX FIFO is full, the THI will generate a split response (AMBA protocol) to the host if a new
data transfer is requested. If a split response has been generated and another request (from the same

master) is received before the transfer completion, the THI will give another split response.

When the THI receives a request from a master but cannot handle the request, it gives a split response.
Before the transfer completion, if another master (different from the first one) requests the THI, the THI

will response with an error message.

If the THI receives a request from a master while the link is not connected, the THI will send an error

response. Then, a specific interrupt will be generated. If the split has been activated, it will be released.

Only one master should dialogue with the THI to avoid any confusion of data.

3.3.3 RX Host Interface (RHI)
3.3.3.1 The format of the storage

For the RX, the SpaceWire IP has one AHB interface. This interface allows DMA transfers from the RX
FIFO to an AHB slave. The RX interface transfers data in packet format to the AHB slave. The format of

a packet is described hereafter:

Header (32 bits)

Data (32 bits)

Data (32 bits)

Tableau 3.3.3-1 Packet format

Header contents:

- bit 31 down to 18 : unused
- bit 17 down to 16 : status
- bit 15 down to O : packet size

The 2-bit status indicates the validity of the current packet (complete packet or incomplete packet because
of link error, EEP reception or no space left in memory area). The packet size indicates the number of

bytes of the packet.

The host allocates two memory areas (1 and 2) and configures 2 sets (one for each area) of three word
aligned addresses in the SWB. The first address, called Start_Area Address, represents the beginning of (1
or 2) allocated area, the second address, called End_Packet Address, is close to the (1 or 2) allocated area
end and the last address, called End_Area Address, is the real end of the (1 or 2) allocated area.

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003
Page :15

The couple of three addresses is written in the SpaceWire Configuration registers through the APB bus by
the CPU. In addition to these addresses, the host provides a command indicating the validity of the areas.

Practically, the host validates one memory area at least to enable the Rx data transfer from the Rx FIFO to

the host memory. For this, the Start_Area, End_Packet and End_Area Registers is programmed and the

AREA1_VALID or/and AREA2_VALID bit(s) is set to validate the memorty area(s).

The following figure shows the host memory allocation.

Allocated memory area 1

Allocated memory area 2

Area 1 Start > Packet 1 header Area 2 Start _p) Packet 3 header
Area Address Area Address
Data Data
Data Data
Packet 2 header Packet 4 header
Data Data
ArealEnd _ Area2End)|
Packet Address Data Packet Address Data
Area 1 End —»> Area 2 End —p|
Area Address Area Address

Figure 3.3.3-1 Storage format

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :16

3.3.3.2 The functionality of the RHI

The following figure shows how the RHI stores data into the host memory.

k-

Current Buffer End (CBE) = Area_Start_addr

Current Data Address (CDA) = Area_Start_addr + 1

Data EOP / EEP

NChar retrieved
from RX FIFO

store data at CDA

CDA=CDA+1 store header at CBE

v

CBE = CDA

v

CDA=CDA+1

CDA =
Area_end_addr
?

Error Interrupt

no

Area_Middle_addr

Wait

Store a NULL
header at CBE if
possible

no

Other Memory Area
available ?

Change
area_start_addr,
area_end_addr,

area_middle_addr

Figure 3.3.3-2 RX storage

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :17

The RHI indicates the current end of the currently used area (1 or 2), called Current Buffer End. When
the area is empty, the Current Buffer End is the Start Address of this area. When an entire packet is stored
into the used area, the Current Buffer End indicates the address of the next packet header. The EOP or
EEP is not written into the host memory. Depending on the packet size, the last data of the packet may
contain 1, 2, 3 or 4 valid bytes. The rule to determine which ones are valid is the same as in TX Host

Interface. The Current Buffer End is only updated when the entire current packet is stored.

The RHI indicates the used memory area (AREA1_USED or AREA2_USED bit in the management

register) so that the host can follow the storage progression by monitoring the Current Buffer End.

The RHI uses the Start Address to start writing packets in host memory in a given area (1 or 2). The RHI
first attempts to use area 1. During packet data reception and up to the reception of the end of packet, the
RHI leaves the packet header empty. When an end of packet is detected in the Rx FIFO, the RHI fills the
header of the packet that it had just finished to write. The status will be set to "01" if an EEP has been
retrieved from the Rx FIFO, it will be set to "10" if there is no space left in the memory area to complete
the packet transfer, otherwise the status bit will be "00". The packet size is filled with the number of bytes
of the packet.

In case the RX receives data and no area is allocated, the SWB generates the NO_AREA_VALID

interrupt.

If the SWB receives a NULL character and the link is not enabled, the LINK_NOT_ENABLED

interrupt will be generated to warn the host.
3.3.3.3 Reaching the End_Packet Address

If the RHI reaches the End_Packet Address during a packet transfer, it will write a null header into the
current memory area after the last data of the current packet. If no space is available, the null header will
not be written. Then the current AREA1_USED or AREA2_USED bit is reset. The SWB then
invalidates the current memory area by resetting the AREA1_VALID or AREA2_VALID bit. The re-

validation of the area or the definition of a new area is in charge of the host.

If the other allocated area is valid, the RHI will continue transferring the next packet into the other
available allocated area. If the other area is not valid, the RHI will generate the NO_AREA_VALID

interrupt and stops the packet transfer until the host provides another available area.
3.3.3.4 Reaching the End_Area Address

If the RHI reaches the End_Area Address before ending writing the current packet, the RHI will write the
packet header with the current number of bytes written in the buffer as packet size and with the status
"10" indicating that the packet contains no error but is incomplete. The status ""10" will be generated

even if all the packet data are written.
The EXCEED_MEM interrupt is activated.

The remaining data of the packet is written in another available memory area and is considered as an
entire packet. So it is the host responsibility to concatenate the beginning of the packet with the end of the
packet (the packet can be split between areas 1 and 2) or to perform any other recovery actions (link

restart,...).

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :18

3.3.3.5 AHB error occurrence

When the RHI receives an error response, the data storage stops without ending the current packet

storage. Both memory areas become invalid.

The storage starts again when a memory area is validated. The last part of the incompletely stored packet

is written into the new valid memory area.

3.3.3.6 Advice

The space between the End Packet Address and the End Area Address should be at least equal to the
maximal size of a packet (expected to be received by the host) in order to guarantee a safe protocol.

3.3.4 Format of the words stored in the TX and RX FIFOs:

The TX and RX FIFOs contain 9-bit words.

MSB LSB
Data Data
4 MSB LSB

\ /
e

Data-Control Data Field
Flag

Figure 3.3.4-1 FIFO word format

Control flag Data Bits(MSB...LSB) Meaning

0 XXXXXXXX 8-bit data
TX FIFO 1 XXXXXXX0 EOP
1 XXXXXXX1 EEP

0 XXXXXXXX 8-bit data
RX FIFO 1 00000000 EOP
1 00000001 EEP

Tableau 3.3.4-1 Word meaning
See the AD11 for details.

3.3.5 The interrupts

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :19

The Internal Register Description paragraph shows all the interrupts. An interrupt remains active until its

reset.

When an interrupt is asserted, the host should perform all the corresponding tasks before clearing this

interrupt by writing into the I'T_RESET register.

The ITMASKREG allows inhibiting the output interrupt signals (nominal interrupt and error interrupt)
but doesn't inhibit the interrupt register. Interrupt register bits will still be set.

3.3.6 Time Code transmission and reception

To send a time code, the host either generates a pulse on the TICKIN_CTM input signal or asserts the
TICKIN bit of the management register. A time code is sent when a rising edge is detected on
TICKIN_CTM or TICKIN.

It is possible to initialise the time code value by writing in the time code register (TIMESEND_REG
byte).

When a correct time code is received, the SWB generates a pulse on the TICKOUT_CTM output signal
and the TICKOUT interrupt is asserted.

The received time code value is in the time code register (TIMEREC_REG byte).

3.3.7 Test mode
The test mode is activated when TEST_MODE_HARD and TEST_MODE_SOFT are high.

The test mode allows invalidating the host memory areas. See the Internal Register Description paragraph.

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :20

3.4 INTERNAL REGISTER DESCRIPTION

All the SWB registers are accessible through the APB interface. The input address is interpreted as a byte
address, as per AD9Y. Since each access is a word access, the two least significant address bits are assumed
always to be zero. Only address bits 6:2 are decoded. Misaligned addressing is not supported. For read

accesses, data output is produced combinatorially from the address.

3.41 Global description

Register name Address (Hex) | Read/Write Remark Reference
Management | ------ 00 t/w link management and status. Tableau 2
Interrupt | - 04 r Interrupt status. Tableau 3
Current Buffer End | --—---- 08 r Current end of the used | Tableau 4

memory area.
Start Address 1 | -—--- 0C t/w Memory area 1 start address Tableau 5
Start Address 2 | - 10 t/w Memory area 2 start address Tableau 6
Middle Address 1~ | ------ 14 t/w Memory area 1 packet end Tableau 7
Middle Address 2 | ------ 18 t/w Memory area 2 packet end Tableau 8
End Address 1~ | -—-—-- 1C t/w Memory area 1 end address Tableau 9
End Address 2 | ------ 20 t/w Memory area 2 end address Tableau 10
Descriptor | - 24 t/w First address of the linked list | Tableau 11
of packets
Time Out | ———-- 28 t/w Time out programmation Tableau 12
Interrupt Mask | ————-- 2C t/w Tableau 13
Interrupt reset | -——-- 30 W Tableau 14
Interrupt set | - 34 w Tableau 15
Time Code | - 38 t/w Time code programmation and | Tableau 16
status
Additional status | ------ 3C r Tableau 17
register

astrium

Ref :R&D-SOC-NT-292-V-ASTR

SCOC Issue :Orev. 2

Date :18/06/2003

Page :21
3.4.2 Detailed description
Management Register: address 00H
Bits Name Reset Function r/w
Value

31-24 | FREQ_INIT 0 Configuration of the TX clock frequency used duting the| t/w
link initialisation. See 5.2.1.

» In the gated TX clock configuration, the input TX
clock frequency is divided by 2(FREQ_INIT+1)
then is used as TX frequency.

> In the not-gated TX clock configuration, the input
TX clock frequency is divided by
(FREQ_RUN+1).

23-16 |FREQ_RUN 0 Configuration of the TX clock frequency used after the link t/w
initialisation. See 5.2.1.

> In the gated TX clock configuration, the input TX
clock frequency is divided by 2(FREQ_RUN+I)
then is used as TX frequency if TX_MAX_EN=0.

» In the not-gated TX clock configuration, the input
TX clock frequency is divided by
(FREQ_RUN+1).

15-13 | ST_TRANS 0 Status showing the link initialisation progression. r
0 to 4: initialisation state (0=ErrorReset, 1=ErrorWait,
2=Ready, 3=Started, 4=Connecting)

5: run state

12 | TICKIN 0 The host can transmit a time code by asserting this bit. W
Writing a '1' launches the time code transmission
Writing a '0' has no effect

11 |LINK_DISABLED 0 The link is disabled. r/w
0: link not disabled
1: link disabled

10 |LINK_START 0 The link can start. r/w
0: link not started
1: link started

9 AUTOSTART 0 The link automatically starts when a NULL character is |t/w
received.
0: autostart off
1: autostart on

8 TX_MAX_EN 0 This bit is only used with the gated TX clock|t/w

configuration. In run state, the TX frequency used will be

the same as the input TX clock frequency if this bit is

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :22

Bits Name Reset Function t/w
Value

asserted. See 5.2.1.
0: max TX frequency Off
1: max TX frequency On

7 DMA_RUNNING 0 This bit indicates if the DMA is running or not.
0: DMA is not running
1: DMA is running

6 AHB_MODE_TX 0 The host has 2 possibilities to transfer data to the SWB. r/w
0: TX AHB slave
1: TX AHB master (DMA)

5 TEST _MODE_SOFT 0 When TEST MODE_HARD input signal and [r/w
TEST_MODE_SOFT are asserted, the test mode is active.
4 ABORT_PACKET 0 Abortion of the data transfers. Writing a '1"' launches the |t/w

abortion process.
Writing a '0' has no effect.

This bit is automatically reset when the abortion process

ends.

3 AREA2_USED 0 This bit is asserted when the host memory area 2 is used to | ¢
store the data from the SWB.

2 AREA1_USED 0 This bit is asserted when the host memory area 1 is used to| ¢
store the data from the SWB.

1 AREA2_VALID 0 This bit validates the area 2. So the SWB can use the area 2 |r/w

to store data.

Writing a '1' validates the area 2.

Writing a '0' has no effect.

This bit is automatically reset when the area 2 is full.

In test mode, writing a '0' will reset this bit.

0 AREA1_VALID 0 This bit validates the area 1. So the SWB can use the area 1 [r/w
to store data.

Writing a '1' validates the area 1.

Writing a '0' has no effect.

This bit is automatically reset when the area 1 is full.

In test mode, writing a '0' will reset this bit.

Tableau 2

Warning 1: To let unchanged the validity of the AREAT and AREAZ2, the user must write '0" in bit 0 and
bit 1 each time a write access is performed in this register.

'

Warning 2: To prevent accidental transfer abortion, the user must write '0' in bit 4 each time a write

access is performed in this register.

astrium

Ref :R&D-SOC-NT-292-V-ASTR
Issue :Orev. 2
Date :18/06/2003

Page :23

SCOC

Interrupt Register: address 04H

Bits

Name

Reset
Value

Function

t/w

16

PACKET_REC

This bit is asserted when a complete packet has been
received.

Nominal Interrupt

15

LINK NOT ENABLED

This bit is asserted when a NULL character is received but
the link is not enabled (LINK_DISABLED On or
LINK_START Off and AUTOSTART Off)

Nominal Interrupt

14

EXCEED_MEM

When the SWB cannot store a packet entirely because the
host memory area is full, this bit is asserted.
Nominal Interrupt

13

TICKOUT

This bit is asserted when a right time code has been received.
Nominal Interrupt

12

END_LIST

In TX AHB master mode, when the SWB reaches the end of
the linked list of packets, this bit is asserted.
Nominal Interrupt

11

NO_AREA_VALID

When data have been received but any host memory area is
available, this bit is asserted.
Nominal Interrupt

10

WRONG_MODE

Writing in the descriptor register (24H) while in TX AHB
slave mode or writing in the TX AHB slave while in TX
AHB master mode will assert the WRONG_MODE bit.
Error Interrupt

RD_ACCESS_ERROR

A read access to the TX AHB slave will assert this bit. A
AHB error response will be generated.

Error Interrupt

AMBA_ERROR

This bit is asserted when the SWB receives a AHB error
response.

Error Interrupt

LINK_NOT_READY

This bit is asserted when the TX AHB slave is selected and

the link is not connected.

Error Interrupt

EEP_REC

This bit is asserted when a EEP has been received.
Error Interrupt

CREDIT_ERR

This bit is asserted when the SWB receives a FCT but the
increment of the credit counter will exceed 56.

Error Interrupt

OUTSTAND_ERR

This bit is asserted when the SWB receives a data but is not

waiting for any one (outstanding counter at 0).

astrium

Ref :R&D-SOC-NT-292-V-ASTR

SCOC Issue :Orev.?2

Date :18/06/2003

Page :24
Bits Name Reset Function r/w
Value
Error Interrupt
3 CHAR_SEQ_ERR 0 This bit is asserted when a character sequence error is| r
detected.
Error Interrupt
2 DISCONNECT_ERR 0 This bit is asserted when a link disconnection is detected. r
Error Interrupt
1 PARITY_ERR 0 This bit is asserted when a parity error is detected. r
Error Interrupt
0 ESC_ERR 0 This bit is asserted when a received ESC character is| r
followed by neither a FCT nor a data.
Error Interrupt
Tableau 3
The active value of an interrupt is '1".
Current Buffer End Register: address 08H
Bits Name Reset Function r/w
Value
31-0 |CUR_BUF_END 0 This address pointer indicates the current end of the used| r
host memory area. All addresses between the start address
value and the address pointer value (address pointer value
not included) contain valid data.
Tableau 4
Start Address 1 Register: address 0CH (see note 1)
Bits Name Reset Function t/w
Value
31-0 |START_AREAI1 0 This address pointer indicates the start address of the host |t/w
memory area 1.
Tableau 5
Start Address 2 Register: address 10H (see note 1)
Bits Name Reset Function r/w
Value
31-0 [START_AREA2 0 This address pointer indicates the start address of the host |t/w

memory area 2.

Tableau 6

Middle Address 1 Register: address 14H (see note 1)

astrium

Ref :R&D-SOC-NT-292-V-ASTR

SCOC Issue :Orev. 2

Date :18/06/2003

Page :25
Bits Name Reset Function r/w
Value
31-0 [|END_PAC1 0 This address pointer indicates the middle address of the host |t/w
memory area 1.
Tableau 7
Middle Address 2 Register: address 18H (see note 1)
Bits Name Reset Function r/w
Value
31-0 |END_PAC2 0 This address pointer indicates the middle address of the host r/w
memory area 2.
Tableau 8
End Address 1 Register: address 1CH (see note 1)
Bits Name Reset Function t/w
Value
31-0 |END_AREA1 0 This address pointer indicates the end address of the host |r/w
memory area 1.
Tableau 9
End Address 2 Register: address 20H (see note 1)
Bits Name Reset Function r/w
Value
31-0 |END_AREA2 0 This address pointer indicates the end address of the host |r/w
memory area 2.
Tableau 10
Descriptor Register: address 24H
Bits Name Reset Function r/w
Value
31-0 | DESC_ADDR 0 By writing in this register, the host gives the first element |r/w

address of the linked list of packets. For a nominal operation,
the host must not write again in this register before the
END_LIST interrupt activation.

By reading in this register, the host can monitor the

progression in the linked list.

Tableau 11

astrium

Ref :R&D-SOC-NT-292-V-ASTR

SCOC Issue :Orev.?2

Date :18/06/2003

Page :26
Time-Out Register: address 28H (see note 2)
Bits Name Reset Function r/w
Value

23-16 [DIS_CNT_LIM FF | 'This is the time out for the link disconnection detection. r/w
DIS_CNT_LIM = 1 means time out = 1 system clock period
The DIS_CNT _LIM will take a definite value so that the
time-out is set to 850 ns.

15-8 |RESERVED Not used for the moment. These bits will be used if the
DELAYWIDTH constant becomes higher than 8 (Refer to
RD22)

7-0 |DELAY_6_4 FF |This is the 6.4 ps time out used in the link initialization |r/w
protocol. The user will give a value so that this time out is
about 6.4 ps.

DELAY_6_4 = 1 means time out = 1 system clock period
Tableau 12
Interrupt Mask Register: address 2CH
Bits Name Reset Function t/w
Value

15-0 |ITMASKREG 1 This register masks the interrupts. t/w
bit at '0" : the corresponding interrupt is masked
bit at '1": the corresponding interrupt is not masked

Tableau 13
Interrupt Reset: address 30H
Bits Name Reset Function r/w
Value

15-0 [IT_RESET - The host can reset the interrupts by writing at this address. W
Writing a '0' : the corresponding interrupt is reset
Writing a '1' : no effect on the corresponding interrupt

Tableau 14
Interrupt Set: address 34H
Bits Name Reset Function r/w
Value
15-0 [IT_SET - The host can set the interrupts by writing at this address. w

Writing a '0' : no effect on the corresponding interrupt

Writing a '1' : the corresponding interrupt is set

Tableau 15

astrium

Ref :R&D-SOC-NT-292-V-ASTR

SCOC Issue :Orev. 2

Date :18/06/2003

Page :27
Time Code Register: address 38H
Bits Name Reset Function t/w
Value
15-8 | TIMESEND_REG 0 The host can initiate the time code value to send. r/w
7-0 | TIMEREC_REG 0 This register contains the received time code value. r
Tableau 16
Note 1: For this register, the value must be an address aligned with a 32-bit data.
Additional Status Register: address 3CH
Bits Name Reset Function r/w
Value
17 FIFO_FULL 0 In AHB slave mode, this flag indicates the state of the 32-bit
AHB FIFO.
» 0: not full
> 1:full
16 GATED_TX_CLOCK - Indicates the TX clock configuration:
> 0: Not-gated TX clock configuration
> 1: Gated TX clock configuration
15-14 | UNUSED
13-8 |OUTSTANDING_CNT 0 Outstanding counter value. r
7-6 | UNUSED
5-0 |CREDIT_CNT 0 Credit counter value. r

Tableau 17

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003
Page :28

3.5 INTERFACE DESCRIPTION

3.51 Clocks, test and reset
Signal name I/0 Description Active
value
clk_txin 1 Max transmission clock. Lower TX frequency is a -
division of this clock.
clk_sw I system clock -
test_mode_hard I asynchronous signal to activate the test mode 1
resetn 1 asynchronous reset 0
3.5.2 APB interface
Signal name I/0 Description Active
value
apb_slv_in. PWDATA(31-0) 1 AMBA APB bus in. (Sampled on the -
apb_slv_in.PSEL clk_sw rising edge)
apb_slv_in. PENABLE
apb_slv_in. PADDR(31-0)
apb_slv_out. PRDATA(31-0) O AMBA APB bus out. (generated on the -
clk_sw rising edge)
3.5.3 TX AHB master interface
Signal name I/0 Description Active
value
tx_ahb_mst_in HGRANT 1 AMBA AHB master bus in for the TX -
tx_ahb_mst_in. HREADY host interface. (Sampled on the clk_sw
rising edge)
tx_ahb_mst_in. HRESP(1-0)
tx_ahb_mst_in. HRDATA(31-0)
tx_ahb_mst_in. HCACHE
tx_ahb_mst_out HBUSREQ O AMBA AHB master bus out for the TX -

tx_ahb_mst_out HTRANS
tx_ahb_mst_out. HADDR(31-0)

tx_ahb_mst_out HWRITE

host interface. (generated on the clk_sw

rising edge)

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :29

tx_ahb_mst_out. HSIZE(2-0)
tx_ahb_mst_out. HBURST(2-0)
tx_ahb_mst_out. HPROT(3-0)

tx_ahb_mst_out HWDATA(31-0)

3.5.4 'TX AHB slave interface

Signal name I/0 Description Active

value

tx_ahb_slv_in.HSEL 1 AMBA AHB slave bus in for the TX host -

x ahb slv in.HWRITE interface. (Sampled on the clk_sw rising

edge)
tx_ahb_slv_in. HADDR(31-0)
tx_ahb_slv_in. HTRANS(1-0)
tx_ahb_slv_in HWDATA(31-0)
tx_ahb_slv_in. HREADY
tx_ahb_slv_in. HSIZE(2-0)
tx_ahb_slv_in. HMASTER(3-0)
tx_ahb_slv_in. HMASTLOCK
tx_ahb_slv_in. HBURST(2-0)

tx_ahb_slv_in. HPROT(3-0)

tx_ahb_slv_out. HREADY O AMBA AHB slave bus out for the TX -

tx_ahb_slv_out. HRESP(1-0) host interface. (generated on the clk_sw

rising edge)
tx_ahb_slv_out HRDATA(31-0)

tx_ahb_slv_out. HSPLIT(15-0)

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003
Page :30

3.5.5 RX AHB master interface
Signal name I/0 Description Active
value
rx_ahb_mst_in I AMBA AHB master bus in for the RX host interface. -
(Sampled on the clk_sw rising edge)
rx_ahb_mst_out O AMBA AHB master bus out for the RX host interface. -
(generated on the clk_sw rising edge)
3.5.6 Link interface
Signal name I/0 Description Active
value
d_in I asynchronous input data signal -
s_in I asynchronous input strobe signal -
d_out O output data signal. (Generated on the internal TX clock -
rising edge)
s_out O output strobe signal. (Generated on the internal TX clock -
rising edge)
3.5.7 Time interface
Signal name I/0 Description Active
value
tickin_ctm 1 signal to send time code. (Sampled on the clk_sw rising 1
edge)
tickout_ctm O right time code received. (Generated on the clk_sw rising 1
edge)
3.5.8 Interrupt interface
Signal name I/0 Description Active
value
err_int O output error interrupt. (Generated on the clk_sw rising 1
edge)
nom_int O output error interrupt. (Generated on the clk_sw rising 1

edge)

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :31

4 PERFORMANCE

The TX frequency can be up to 4 times the system clock frequency.
The RX rate can be up to 4 times the system clock frequency.

The Time Code transmission order is taken into account 1 system clock period after its generation. But

the real Time Code transmission depends on the length of the current transmitted character.

When data have to be transmitted, no Null character is transmitted between 2 data transmissions. But
when the TX master mode is used and the packet size is too small, Null character can be transmitted
because of the time lost to retrieve the packet size and the data address. If any bus request is immediately
granted, the minimum packet size will be 6 in order to avoid Null character transmission between 2 data

transmissions (at maximum TX frequency).

In TX slave mode, to ensure that the TX FIFO does not become empty, the host sends one data word at
least at each 10 system clock periods. So, it prevents the Null character transmission between 2 data

transmissions.

If the AHB bus is immediately granted, it will take at the most 9 system clock cycles to build a 32-bit word

with 4 received 8-bit data and to store it into the host memory.

astrium

SCOC

Ref

Issue
Date
Page

:R&D-SOC-NT-292-V-ASTR

:Orev. 2

132

: 18/06/2003

5

ARCHITECTURE DESCRIPTION

The figure below gives an overview of the SWB architecture.

tx_cnt
DataCtrl
ol |x -
o,z _ 3
£l %) % TimeSend_reg (from sw_reg block) =3
= [
2|75 °
= I
parity TimeSend_tx TimeSend eflfo data_in
data Id_TimeReg FCTSend_tx FCTSend fifo_rd
t_bit - Id_FCTReg DataSendX_tx DataSendX txfifo_empty
strobe ds_gen tx_shift_reg 1d DataReg i sele tx_mgt TX_FIFO
1d_NullReg = sTmeDalaX X s
tx_resync Ve
52
g 5 z g.@‘
g5 8] 3|2
8[Q|E FCTSend_tx gz
z Sl 25|12)
o = ;I = 5159 (ahb_tx_int
= =<1 _IX_|
5 G- Ll block)
w 2 o
=z TimeSend_ack <) %‘ ¥
4 FCTSend_ack Tlo|o
Q tx_ack DataRecX 3|5|e
o i
N E0|8 sw_counters
z -
3
<
rst_discl VIV @)
rst_disc2 5 Q
. H DisCnt_enl =
disconnection DisCnt_en2 QOTEOP_T GOtEEP _r % 4 S
rstn_trig gotFCT_r.gotData_r 52 g
rst_discl r,rst disc2 r 9 5 8
DisCnt_enl rDisCnt en2 r | § & ol
=5 2
rx_resync 2 I
_ strobe D ok 1 gotFCT_ack sw_resync 5
lgotFCTack_r rstn_delay
CreditErr,ParityErr, rstn_rx delay_12_8
RxDatal ESCErr init fsm delay 4
data . RxlseallaZ ; g(;:lgglg rstn_tx —
rx_shiftreg g 3
s RxData rx decod gotEEP g
.) S gotTime 3
gotFCT | |delay_cnt
gotNULL ESCEIT_r ParityErr I =
| Databuffer g b=
s
17}
N £
;\ ;\ ot 3 =
olilz|E| 3 &8 =
olige ¢ g 3
o % olo b - kel
S5 5 & £
TimeBuffer
TimeRec_reg
RX FIFO rxfifoData rx_mgt sw_reg
— rxfifo_wr
rxfifo_full
=
°_|g] cur_buf_end,areal_used,area2_used,no_area_valid
g WE, I start_area,mid_areaend_areaareal valid,area2 valid
S)el |
=B !
apb_slv_out
apb_slv_in

Clock
Domain :

ahb_mst_rx

rx_ahb_mst_in
rx_ahb_mst_out

]
[

INV AHB BUS

TX clock

RX clock

N
[]

Input TX clock

system clock

Figure 3.5.8-1 global architecture

ahb_mst_in
ahb_mst_out ~
AHB_FIFO [-datain ahb_mst_slv_td 5
- fifo_wr ahb_slv_in
fifo_full ahb_slv_out ~
7
b [%2]
s|8le 9
&lels 2
glole 2
SIg|= 5
<
ixfifoData: (TX FIFO i
i txfifo_wr C o
ahb_x int 5ol ” piock) z

astrium

Ref :R&D-SOC-NT-292-V-ASTR

SCOC Issue :Orev.?2

Date :18/06/2003
Page :33

The above schema also describes

the clock trees. The TX clock used for the transmission is made from

the input TX clock. The RX clock is made from the data and strobe input signals.

Top input signals description:

clk_sw
clk_txin

resetn
tickin_ctm
d_in

s_in
apb_slv_in
tx_ahb_slv_in
tx_ahb_mst_in
rx_ahb_mst_in
test_mode_hard:

: SpaceWire clock

: Max Tx clock

: asynchronous reset

: time code to send

: data input

: strobe input

: APB slave

: AHB SLAVE

: AHB MASTER

: AHB MASTER
test mode asserted by hardware

Top output signals description:

clk_txout
tickout_ctm
d_out

s_out
apb_slv_out
tx_ahb_slv_out
tx_ahb_mst_out
rx_ahb_mst_out
err_int

nom_int

: Tx clock for test (disabled for timing performance)
: right time code received
: data output
: strobe output
: APB slave
: TX AHB SLAVE
: TX AHB MASTER
: RX AHB MASTER
: Error interrupt
: Nominal interrupt

51 DESCRIPTION OF THE RESET TREES

combinational 3 rstn_rx asynchronous

process

combinational

system clock

resetn

rstn_tx synchronous

process

system clock TX clock

resetn

T rstn_tx T

resetn asynchronous
SW
HOST
resetn asynchronous interface

Figure 3.5.8-1 Reset trees

The RX block includes all blocks working at RX clock.

The TX block includes all blocks working at TX clock.

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :34

The SW and host interface blocks include all blocks working at system clock.
52 BLOCKS WORKING AT TX CLOCK

5.21 CLK TX GEN block
There are two different architectures for the CLK_TX_ GEN block:

» The first one is a gated TX clock. The generated TX clock has a various frequency following the
2(n+1) frequency divider.

» The second one is a not-gated TX clock. The generated TX clock has a constant and equal
frequency to the input TX clock. The use of an enable signal (clk_tx_en) allows the TX frequency

variation. A (n+1) frequency divider is used.

The GATED_TX_CLK parameter selects the CLK_TX_GEN block architecture:
» GATED_TX_CLK = True : gated TX clock is used.
» GATED_TX_CLK = False : not-gated TX clock is used.

5.2.2 DS_GEN block

Input signals description

clk tx :clock
rstn_tx : reset
Dataln : datain

Output signals description

D : data signal out
S : strobe signal out

The goal is to generate the data and strobe signals according to the AD11 specification.

5.2.3 TX SHIFT_REG block

Input signals description

rstn_tx s reset

clk tx : clock

LD_TimeReg : load time code register
LD_FCTReg : load FCT register
LD_DataReg : load data register
LD_NULLReg : load NULL register

TypeDatal : type data or EOP

TypeData2 : type data or EOP

TypeData3 : type data or EOP

TypeData4 : type data or EOP

parity : parity bit

tx_mux(2:0) : mux control. Selection of the character to be serialized

TimeDatal.D(7:0): time code to load

Ref :R&D-SOC-NT-292-V-ASTR

astrium scoc ssue Qo2 s

Page :35

DatalLD(8:0) : data to load from buffer]

Data2l.D(8:0) : data to load from buffer2

Data3L.D(8:0) : data to load from buffer3

Data4l.D(8:0) : data to load from buffer4

Output signals description
DataSend_sel(1:0): data buffer select
DataCttl : data control flag to differentiate data from EOP or EEP

tx_bit : bit to transmit

This block receives orders to load the shift registers then transmits the serial TX_BIT signal to the
DS_GEN block.

As there are 4 data buffers (DatalLD(8:0), Data2L.D(8:0), Data3L.D(8:0) and Data4L.D(8:0)), the block

swaps from one to another each time a data is loaded. The DataSend_sel signal indicates which data is

E

selected.

Data

A "4
Data Shift Reg |

Time M TimeCode Shift Reg |
FCT Shift Reg |
NULL

{
I
]
tx_bit FCT |
]
[
|

NULL Shift Reg |

Parity

/‘\ Tx_Mux

Figure 5.2.3-1 TX shift registers

5.2.4 TX SELECT block

Input signals description

rstn_tx : reset

TimeSend_tx :time code to send
FCTSend_tx : FCT to send
DataSendl_tx : data from bufferl to send
DataSend2_tx : data from buffer2 to send
DataSend3 tx : data from buffer3 to send
DataSend4_tx : data from buffer4 to send
DataSend_sel(1: O) data buffer select

TypeDatal : type data or EOP

TypeData2 : type data or EOP

TypeData3 : type data or EOP

TypeData4 : type data or EOP

TxCnt(3:0) : position of the current transmitted character
tx_bit : TX data bit

TimeSend_ack : TimeSend acknowledge
FCTSend_ack : FCTSend acknowledge

Output signals description

tx_mux(2:0) : character select

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :36

TxCntDatalLD(3:0) : data to load
LD_TimeReg : load time code
LD_FCTReg : load FCT
LD_DataReg : load data
LD_NULLReg : load NULL

verif EOP_tx : check if data or EOP
parity : 1_parity bit
TxCntlLD : load txcnt

This block manages the character transmission requests from the TX_MGT block. Following the priority
order (time code > FCT > data > NULL), the TX_SELECT block generates the appropriate load signal
to the TX_SHIFT REG block.

The TX_SELECT block also activates the data or EOP/EEP check performed by the TX_CNT. Then
this block manages the TX_CNT load.

The parity bit is computed in this block.

5.2.5 TX_CNT block

Input signal description

rstn_tx : reset
TxCntLD : Load command
DataCtrl : character control bit (data or EOP/EEP)

verif EOP_tx : check if data or EOP to update the counter
TxCntDatal.D(3:0): data to load

Output signal description
CntOut(3:0) : counter value

This 4-bit counter is used to count the characters length. Thus, the TX_SLECT block can generate the

load signals in appropriate time.

This counter loads the TxCntDatal.LD value when the TxCntLD signal is high. The counter is corrected
when an EOP/EEP is checked.

5.2.6 TX ACK block

Input signals description

rstn_tx : reset
DataSend_sel(1:0): data buffer select
FCTSend_tx : FCT to send
LD_FCTReg : load FCT register
LD_DataReg : load Data register
TimeSend_tx : time code to send
LD_TimeReg : load time code register

Output signals description
DataRecl : DataSend acknowledge for bufferl

DataRec2 : DataSend acknowledge for buffer2
DataRec3 : DataSend acknowledge for buffer3

Ref :R&D-SOC-NT-292-V-ASTR

SCOC Issue :Orev. 2

Date :18/06/2003
Page :37

astrium

DataRec4 : DataSend acknowledge for buffer4
TimeSend_ack : TimeSend acknowledge
FCTSend_ack : FCTSend acknowledge

This block generates acknowledgement signals for the time code, FCT and data requests. The
acknowledgement is activated when the corresponding shift register from the TX_SELECT block is
loaded.

The DataRecl/DataRec2/DataRec3/DataRec4 signals is activated for 4 TX clock cycles, then is

automatically off after this time period.

After the activation of the TimeSend_ack/ FCTSend_ack signal, the deactivation is performed only when
the TimeSend_tx/ FCTSend_tx signal is low.

5.2.7 TX_ RESYNC block

Input signals description

rstn_tx : reset

DataSend1 : data from bufferl to send
DataSend2 : data from buffer2 to send
DataSend3 : data from buffer3 to send
DataSend4 : data from buffer4 to send
FCTSend : FCT to send

TimeSend : Time Code to send
TypeDatal : Data or EOP

TypeData2 : Data or EOP

TypeData3 : Data or EOP

TypeData4 : Data or EOP

Output signals description

TypeDatal_tx
TypeData2_tx
TypeData3_tx
TypeData4_tx
DataSend1_tx
DataSend2_tx
DataSend3 tx
DataSend4_tx
FCTSend_tx
rstn_tx_r
TimeSend_tx

following the below architecture.

: resynchronised signal
: resynchronised signal
: resynchronised signal
: resynchronised signal
: resynchronised signal
: resynchronised signal
: resynchronised signal
: resynchronised signal
: resynchronised signal
: resynchronised signal
: resynchronised signal

This block performs the resynchronisation of the signals from blocks working at the system clock

Ref :R&D-SOC-NT-292-V-ASTR

astrium scoc ssue Qo2 s

Page :38
combinational signal signal_r
process b Q b Q b Q
clock 1
asynchronous

clock 2
reset

asynchronous
reset

5.3 BLOCKS WORKING AT RX CLOCK

The RX clock is built from the DATA and STROBE signals as shown hereafter:

Data

RX clock
Strobe

Figure 5.2.7-1 RX clock generation

5.3.1 RX_SHIFTREG block

Input signals description

rstn_rx : asynchronous resetn
d : data in
sel : select RxDatal or RxData2

Output signals description

RxDatal(9:0) : data with first bit detected on falling edge
RxData2(9:0) : data with first bit detected on rising edge
RxData(9:0) : RxDatal or RxData2, depending on the NULL detection

This block memorizes the input serial data on the rising and falling edge of the RX clock.

The RX_SHIFTREG block contains 2 shift registers. The one works on rising edge, the other on the
falling edge.

The character can be received with its first bit sampled on falling or rising edge. So, RxDatal(9:0) and
RxData2(9:0) are used to determine on which edge the first bit is sampled.

This detection is only performed for the first NULL character. The first bit of the following characters is

sampled on the same edge.

The RxData(9:0) word is either RxDatal(9:0) or RxData2(9:0) following the SEL signal value which
depends on the first bit detection on rising/falling edge.

The SEL signal is determined when the first NULL is detected and will remain unchanged as long as the
link is running.
So, to detect the first NULL character, RxDatal(9:0) and RxData2(9:0) are used. Then to detect the

following characters, RxData(9:0) word is used.

The architecture of RX_SHIFTREG is shown hereafter:

astrium

Ref :R&D-SOC-NT-292-V-ASTR

SCOC Issue :Orev.?2

Date :18/06/2003
Page :39

Data

|:| flip-flop working on rising edge

|:| flip-flop working on falling edge

5.3.2 RX_DECOD block

Input signals description

rstn_rx
RxDatal(9:0)
RxData2(9:0)
RxData(9:0)
gotFCT_ack_r

Output signals description

sel
gotData
gotEOP
gotBEEP
gotTime :
TimeBuffer(7:0) :
DataBuffer(7:0) :
ParityErr
CreditErr
ESCErr
gotNULL
gotFCT

i_RxData(9:0) i_RxData(10:1)

RxData(9:0)

Figure 5.3.1-1 RX shift registers

: asynchronous reset

: data with first bit detected on falling edge

: data with first bit detected on rising edge

: RxDatal or RxData2, depending on the NULL detection
: gotFCT acknowledge

: select RxDatal or RxData2
: data received in Databuffer
: EOP received
: EEP received

time code received in TimeBuffer
time code
data

: parity error

: credit error

: ESC error

: got first NULL
: FCT received

The RX_DECOD block contains a 3-bit counter to note the number of FCT received.

Another 3-bit counter is used to determine the time that the character remains in the shift register

(RX_SHIFTREG block).

The RX_DECOD block identifies the character type and verifies the parity.

When the parity is checked, the valid received character is flagged by a signal (gotData, gotEOP, gotEEP,
gotTime, gotFCT or gotNULL). The gotData, gotEOP, gotEEP or gotTime is asserted for 2 RX clock

cycles each time the corresponding character is received. The gotNULL is always asserted after the first

NULL character reception.

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :40

As long as the 3-bit FCT counter value is not null, the gotFCT signal is generated. This signal uses a
handshake protocol. Each time the gotFCT acknowledgement is received, the FCT counter is
decremented and the gotFCT signal deasserted.

If the received character is a time code or a data, the value will be stored into the TimeBuffer or
DataBuffer.

The block also generates 3 error signals. When the parity is false, the ParityErr signal is produced. The
ESCErr indicates that a ESC is not followed by a FCT or a Data. Here, the CreditErr is asserted when the
number of received FCTs is out of limit (>7). The SW_COUNTERS block also generates a CreditErr

signal which depends on the number of data to be transmitted.

5.3.3 RX_RESYNC block

Input signals description

rstn_rx : asynchronous reset
gotFCT_ack : gotFCT acknowledge

Output signal description
gotFCT _ack_r : resynchronized signal

This block resynchronizes the signals from blocks working at system clock following the below

architecture.

combinational signal signal_r
process b Q b Q b Q

asynchronous
reset

asynchronous |
reset

5.3.3.1 DISCONNECTION block

Input signals description

rstn_rx: Rx asynchronous reset
rstn_trig: specific asynchronous reset

Output signals description

rst_discl: reset when link disconnected (on rising edge)
rst_disc2: reset when link disconnected (on falling edge)
DisCnt_enl: DisCnt counter enable
DisCnt_en2: DisCnt counter enable

The DISCONNECTION block produces the reset and enables signals for the counter used to detect the

link disconnection.

After the RX reset, the counter is enabled on the first edge of the RX clock. So, there are 2 enable signals
(DisCnt_enl and DisCnt_en2). The one is asserted on the rising edge of the RX clock, the other on the

falling edge. Once they are asserted, the DisCnt_enl and DisCnt_en2 signals remain activated.

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003
Page :41

Each time an edge of the RX clock occurs, the rst_discl or rst_disc2 signal is asserted to reset the counter.

Then they are de-asserted once the counter is reset.
54 BLOCKS WORKING AT SYSTEM CLOCK

5.4.1 INIT_FSM block

Input signals description

resetn
delay_6_4
delay_12_8
CreditErr_rx_r
CreditErr
OutstandErr
ParityErr_r
ESCEtr_r
DisconnectErr
gotData_r
gotEOP_r
gotBEEP_r
gotTime_r
gotFCT _r
gotNULL_r
link_disabled
link_start
autostart

Output signals description

st_trans(2:0)
sel

FCT _en
Time_Data_en
CharSeqErr
add_EEP
rstn_tx

rstn_rx
rstn_delay

: asynchronous reset

: delay of 6.4 ps

: delay of 12.8 us

: Credit error from Rx

: Credit error from CreditCnt
: Credit error from OutstandCnt
: parity error

: ESC error

: link disconnection

: got data in buffer

: got EOP

: got EEP

: got time code in buffer

: got FCT

: got first NULL

: link disabled

: link start

: link auto start

: state transition for test

: selects the init frequency or the run frequency for the TX clock
: FCT enabled

: Time code and Data enabled

: character sequence error

: Add EEP to Rx FIFO when error occurs

: synchronous Tx reset

: synchronous Rx reset

: reset the delay counter

This block contains the FSM described in the AD11. This FSM manages the link initialisation protocol.
It also includes some additional outputs.

The ST_TRAN(2:0) is used to monitor the link initialisation progression:

ST_TRAN STATE
000 ErrorReset
001 ErrorReset
010 Ready
011 Started

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :42

100 Connecting

101 Run

Tableau 5.4.1-1 State signification

542 DELAY_CNT block

Input signals description

resetn : asynchronous reset

rstn_delay : synchronous reset

cntmax(7:0) : number of system clock periods to reach 6.4 ps
Output signals description

delay_6_4 : delay of 6.4 ps achieved

delay_12_8 : delay of 12.8 ps achieved

The DELAY_CNT block contains an 8-bit counter to compute the 6.4 us and 12.8 us delays used in the
INIT_FSM block.

After reset (resetn or rstn_delay), the DELAY_6_4 signal goes high when the counter reaches the input
CNTMAX(7:0) value once.

After reset (resetn or rstn_delay), the DELAY_12_8 signal goes high when the counter reaches the input
CNTMAX(7:0) value twice.

5.4.3 RX_ MGT block

Input signals description

resetn : asynchronous reset

rstn_rx : Rx asynchronous reset
RxFifo_full : Rx FIFO full

gotEOP_r : got EOP resynchronised once
gotEOP_r 1 : got EOP resynchronised twice
gotEEP_r : got EEP resynchronised once
gotEEP_r_r : got EEP resynchronised twice
gotData_r : gotDatal resynchronised once
gotData_r_r : gotdatal resynchronised twice
gotTime_r : gotTimel resynchronised once

gotTime_r_r : gotTimel resynchronised twice
DataBuffer(7:0) : data from RX_DECOD block
TimeBuffer(7:0) : time code from RX_DECOD block
add_EEP : Add EEP to Rx FIFO when error occurs
TimeRec_reg(7:0): time code register received

Output signals description

tickout : good time code received
EEPRec : EEP received
RxFifoData(8:0) : data to store in rx FIFO
RxFifo_wr : Rx FIFO write

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :43

The main purpose of this block is to store the RX data into the RX FIFO. The block receives a 8-bit data
and stores it into the RX FIFO, adding a control flag bit. It also stores EOP/EEP when
gotEOP/gotEEP is asserted. The format is described in 3.3.4.

If the block receives an EOP/EEP and another EOP/EEP later (without any data between the 2
EOP/EEP), only the first EOP/EEP will be written into the RX FIFO, the second one will not be taken

into account.

The detection of time code, data, EOP or EEP is done on the rising edge of gotTime_r, gotData_r,
gotBEOP_r or gotEEP_t.

An interrupt (EEPRec signal) is generated when an EEP is received.

When a new time code is received, the block compares the new time code value (TimeBuffer) with the last
stored time code value (TimeRec_reg). The TICKOUT signal is asserted when
TimeBuffer=TimeRec_reg+1.

5.4.4 RX_FIFO block

Input signals description

rstn : asynchronous reset

datain(8:0) : data in

fifo_rd : FIFO read

fifo_wr : FIFO write
Output signals description

fifo_full : FIFO full

fifo_empty : FIFO empty

dataout(8:0) : data out

The synchronous RX FIFO can contain 64 9-bit words. This FIFO stores the RX data.

5.4.5 TX_FIFO block

Input signals description

rstn : asynchronous reset

datain(8:0) : data in

fifo_rd : FIFO read

fifo_wr : FIFO write
Output signals description

fifo_full : FIFO full

fifo_empty : FIFO empty

dataout(8:0) : data out

The synchronous TX FIFO can contain 8 9-bit words. This FIFO stores the TX data.

5.4.6 AHB_FIFO block

Input signals description

rstn : asynchronous reset
datain(31:0) : data in

Ref :R&D-SOC-NT-292-V-ASTR

astrium scoc ssue Qo2 s

Page :44
fifo_trd : FIFO read
fifo_wr : FIFO write
Output signals description
fifo_full : FIFO full
fifo_empty : FIFO empty

dataout(31:0) : data out
The synchronous AHB FIFO can contain 4 32-bit words. This FIFO stores the 32-bit data from the AHB
bus.

54.7 TX MGT block

Input signals description

rstn_tx : synchronous reset
rstn_tx_t : resynchronised signal
rstn_tx_t t : resynchronised signal
resetn : asynchronous reset
FCT _en : FCTSend enable

Time Data_en : Time code and Data enabled
DataRecl_SW_r: DataSend1 acknowledge
DataRec2_SW_r: DataSend2 acknowledge
DataRecl_SW_r_r: DataSend1 acknowledge
DataRec2_SW_r_r: DataSend?2 acknowledge
DataRec3_SW_r: DataSend3 acknowledge
DataRec4_SW_r: DataSend4 acknowledge
DataRec3_SW_r_r: DataSend3 acknowledge
DataRec4_SW_r_r: DataSend4 acknowledge
tickin : tick in

tickin_r : tick in

fifo_data_in(8:0): data from FIFO
FifoECnt(6:0) : Rx FIFO empty slots number
FCTSend_ack_SW_r: FCTSend Acknowledge
TxFifo_empty : Tx FIFO empty
OutstandCnt(5:0): Outstanding data counter
CreditCnt(5:0) : Credit data counter
TimeSend_ack_r: TimeSend acknowledge

Output signals description

FCTSend : FCT to send

fifo_rd : read fifo

DatalBuf(8:0) : TX data buffer 1
Data2Buf(8:0) : TX data buffer 2
Data3Buf(8:0) : TX data buffer 3
Data4Buf(8:0) : TX data buffer 4
dec_CreditCnt : decrement Credit counter
TimeSend : Time Code to send
DataSend1 : Data from bufferl to send
DataSend2 : Data from buffer2 to send
DataSend3 : Data from buffer3 to send
DataSend4 : Data from buffer4 to send

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003
Page :45

The TX_MGT block retrieves data from the TX FIFO and generates character transmission requests to
the TX_SELECT block.

There are 4 data buffers (DatalBuf, Data2Buf, Data3Buf and Data4Buf) to keep the maximum data
transfer rate. The DataSendl request corresponds to the buffer 1, the DataSend2 request corresponds to
the buffer2 and so on...

When more than one DataSend is asserted, the TX_SELECT block knows which one has priority because

it takes it in turns.

When the TX reset (rstn_tx signal) rising edge is detected, the TX_MGT block flushes the TX FIFO until
an EOP/EEP to delete the cutrent data packet.

The following schema describes how the FCTSend signal is generated:

FCTSend_ack

RX FIFO read +

FIFO_empty
-1 counter

RX FIFO write

+8

FCTSend_ack

gotData or gotEOP or -1
gotEEP

OutStanding
counter

Figure 5.4.7-1 FCT send function

The TimeSend request is activated after the TICKIN rising edge detection.

5.4.8

Input signals description

SW_COUNTERS block

resetn : asynchronous reset
rstn_rx : asynchronous reset
RxFifo_empty : Fifo empty flag
FCTSend : FCT to send
FCTSend_ack_SW: FCTSend acknowledge
RxFifo_rd : fifo read

RxFifo_wr : fifo write

gotEOP_r : got EOP

gotBEEP_r : got EEP

gotData_r : got Data

dec_CreditCnt : decrement Credit counter
gotBEOP_r_r : got EOP

gotEEP_r_r : got EEP

gotData_r_r : got Data

gotFCT_SW_r : gotFCT

gotFCT_ack : gotFCT acknowledge

DisCntLim(7:0)

disconnect time limit

rst_discl : reset when link disconnected
rst_disc2 : reset when link disconnected
DisCnt_enl : DisCnt counter enable
DisCnt_en2 : DisCnt counter enable

Output signals description

FCTSend

astrium scoc ssue Qo2 s

Ref :R&D-SOC-NT-292-V-ASTR

Page :46
rstn_trig : specific asynchronous reset
DisconnectErr : link disconnection detected
OutstandErr @ Outstanding Error

OutstandCnt(5:0): Outstanding data counter
CreditCnt(5:0) : Credit data counter

CreditErr : Credit Error

FifoECnt(6:0) : Number of free space in the RX FIFO

This block contains 4 counters:

The FifoECnt 7-bit counter is used to note the number of free space in the RX FIFO. This
counter is incremented when a read is performed; it is decremented when a write is done. Its reset

value is 64.

The CreditCnt 6-bit counter is used to store the number of data that can be transmitted. Its reset
value is 0. It is incremented by 8 when a FCT is received and is decremented when a data is

transmitted.

The OutStandCnt 6-bit counter is used to store the number of data that is expected to be
received. Its reset value is 0. It is incremented by 8 when a FCT is transmitted and is decremented

when a data is received.

The DisCnt 8-bit counter is used to count the delay beyond which one the link disconnection
error is activated. When the DISCONNECTION block enables this counter, it is incremented at

each system clock petiod. Its reset value is 0. The reset is done at each edge of the RX clock.

The SW_COUNTERS block generates the Credit Error when its value is out of 56.

The OutStandErr signal is asserted when a data is received while no one is expected.

The DisConnectErr signal is asserted when the disconnection time out is reached.

5.4.9

SW_RESYNC block

Input signals description

resetn : asynchronous reset
test_mode_hard : test mode asserted by hardware
CreditErr_rx : credit error from Rx FCT counter
tick_req : tick request

ESCErr : ESC error

ParityErr : Parity Error

gotData : got data in bufferl

gotTime : got Time Code in bufferl
gotEOP : got EOP

gotEEP : got EEP

gotFCT : got FCT

rstn_tx : reset Tx

FCTSend_ack : FCTSend acknowledge

TimeSend_ack : TimeSend acknowledge
DataRecl : DataSend1 acknowledge
DataRec2 : DataSend?2 acknowledge
DataRec3 : DataSend1 acknowledge

Ref

:R&D-SOC-NT-292-V-ASTR

astrium scoc ssue Qo2 s
Page :47

DataRec4
gotNULL
rst_discl
rst_disc2
DisCnt_enl
DisCnt_en?2

Output signals description

rst_discl_r
rst_disc2_r
DisCnt_enl_r
DisCnt_en2_r
tick_req_r

CreditErr_rx_r

ParityErr_r
ESCErr_r
gotData_r
gotData_r_r
gotEOP_r
gotBEOP_r_r
gotBEEP_r
gotBEEP_r_r
gotTime_r
gotTime_r_r
gotFCT _r
gotFCT_r_r

: DataSend2 acknowledge

: got NULL character

: reset when link disconnected
: reset when link disconnected
: DisCnt counter enable

: DisCnt counter enable

: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
FCTSend_ack_r:
test_mode_hard_r: test mode asserted by hardware

resynchronised on rising edge

TimeSend_ack_r: resynchronised on rising edge

gotNULL_r
rstn_tx_t
rstn_tx_r r
DataRecl_r
DataRec2_r
DataRecl_r
DataRec2_r r
DataRec3_r
DataRec4_r
DataRec3_r_r
DataRec4_r_r

This block resynchronised the signals from blocks working at RX or TX clock following the below

architecture.

combinational

signal

: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge
: resynchronised on rising edge

signal_r

signal_r_r

process

clock 1

asynchronous
reset

wlr [

asynchronous |

5.410 SW_REG block

reset

Ref

:R&D-SOC-NT-292-V-ASTR

astrium scoc ssue Qo2 s
Page :48

Input signals description

resetn : asynchronous reset

rstn_tx : synchronous reset

st_trans(2:0) : state transition for test

apb_slv_in : APB input signals

rd_access_error : read access error - bad address
wrong_mode : AHB slave write access in wrong mode
end_list : end of linked list in tx AHB master mode

clear_areal walid:
clear_area?_ walid:
amba_error

no_area_valid

clear the area 1 validity
clear the area 2 validity

: AMBA error
: no valid memory area detected

cur_buf_end(31:0): current buffer end

areal used
area2_used
exceed_mem
clear_abort
desc_addr(31:0) :
tick_req
tick_req_r
ESCE«tr_r

: areal is used to store data

: area2 is used to store data

: Host Memory full

¢ clear the abort packet signal

descriptor address

: tickin
: resynchronised signal
: ESC Error

ParityErr_r: Parity Error

DisconnectErr
CharSeqErr
OutstandErr
CreditErr
CreditErr_rx_r
EEPRec
gotTime_r
gotTime_r_r
TimeBuffer(7:0) :
gotNULL_r
tickout

: Disconnect Etror

: Character sequence etror
: outstanding etror

: credit error

credit error

: EEP received
: got time code in buffer
: resynchronised on rising edge

time code

: got NULL
: a right time code has been received

test_mode_hard: test mode asserted by hardware

Output signals description

autostart
link_start
link_disabled
tickin

: link auto start
: link start
: link disabled

: time code to send

TimeSend_reg(7:0): time code register to send

freq_init(7:0)
freq_run(7:0)
txX_max_en
err_int
nom_int
ahb_mode_tx
new_list

: frequency in initialisation state

: frequency in run state

: enables the TX max frequency in run state
: Error Interrupt

: Nominal Interrupt

: TX AHB master or slave

: new linked list descriptor is available

TimeRec_reg(7:0): time code register received

delay_prg(7:0)
DisCntLim(7:0) :
areal walid
area?_wvalid

: delay of 6.4 ps

Disconnect time limit

: host memory area 1 is valid
: host memory area 2 is valid

astrium

Ref :R&D-SOC-NT-292-V-ASTR
SCOC Issue :Orev. 2

Date :18/06/2003
Page :49

start_areal(31:0): areal start address for areal
start_area2(31:0): area2 start address for area2
end_pac1(31:0) : packet end address for areal
end_pac2(31:0) : packet end address for area2
end_areal(31:0) : areal end address for areal
end_area2(31:0) : area2 end address for area2
abort_packet : abort the packet transfer
apb_slv_out : APB output signals

This block contains all the registers described in the paragraph 3.4, except for the DESC_ADDR register

which is implemented in the AHB_MST_SLV_TX block. The read and write accesses to these registers
through the APB interface are managed in the SW_REG block.

The management of the interrupts is also done here.

5.4.11 AHB_TX_INT block

Input signals description

resetn
ahb_fifo_dataout(31:0)
ahb_fifo_empty
abort_packet
tx_fifo_full

Output signals description

tx_fifo_datain(8:0)
ahb_fifo_rd
tx_fifo_wr
clear_abort

: asynchronous reset

: ahb fifo data out

: ahb fifo empty flag
: abort packet transfer
. tx fifo full flag

: tx fifo data in

: ahb fifo read

: tx fifo write

: reset the abort signal

The goal of this block is to retrieve the 32-bit data from the AHB FIFO, to split the 32-bit data into 8-bit
data, and to fill the TX FIFO with 9-bit data.

For this purpose, the block contains a FSM and a 16-bit counter.

The counter is used to count the number of data in order to push an EOP into the TX FIFO at the end

of the packet.

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :50

Description of the FSM

ahb_fifo_empty='0"

abort_packet="1"'

slv_pac_size=0

abort_packet="1"'

abort_packet="1"

abort_packet='1

abort_packet="1

Figure 5.4.11-1 AHB_TX INT FSM
RD SIZE: reads the AHB FIFO
If abort_packet="1", goes to AD_EOP state.
If the AHB FIFO is not empty, activates the read then goes to WR_SIZE state.
WR SIZE: memorizes the packet size
If abort_packet="1", goes to AD_EOP state.
Loads the slv_pac_size counter with the AHB FIFO value then goes to RD_DAT state.
RD DAT: reads the AHB FIFO

If abort_packet="1", goes to AD_EOP state.

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :51

If the packet size is null, goes to RD_SIZE state to retrieve another packet size.

Otherwise if the AHB FIFO is not empty, activates the read, decrements the slv_pac_size and goes to
WR_DAT state.

WR_DAT: memorizes the 32-bit data from the AHB FIFO

If abort_packet="1", goes to AD_EOP state.
Otherwise load the 32-bit data then goes to SPLIT state.

SPLIT: split and storage

If abort_packet="1", goes to AD_EOP state.

Otherwise, splits the 32-bit data into 8-bit data, adds the control flag '0' then writes the 9-bit data into the
TX FIFO.

If end of the packet, goes to AD_EOP state. Otherwise, returns to the RD_DAT state.
AD EOP: adds an EOP/EEP

if abort_packet=1, adds an EEP then goes to CLEANUP state. Otherwise, adds an EOP then returns to
RD_SIZE state.

CLEANUP: cleanup
Flushes the AHB FIFO, clears the abort_packet signal then goes to RD_SIZE state.

5.4.12 AHB_MST_SLV_TX block

Input signals description

resetn : asynchronous reset
abort_packet : abort packet transfer
ahb_mode_tx : ahb mode: master or slave
new_list : new linked list received
ahb_fifo_full : AHB fifo full flag
ahb_slv_in : AHB slave in
ahb_mst_in : AHB master in
apb_slv_in : APB input signals

Output signals description

desc_addr(31:0) : descriptor address
ahb_mode_error: mode error

end_list : end of linked list

amba_error : AMBA etror

rd_access_error : read access error - bad address
ahb_fifo_wr : AHB fifo write
ahb_fifo_datain(31:0): tx fifo data input
ahb_slv_out : AHB slave out

ahb_mst out : AHB master out

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :52

This block includes functionalities of the TX in DMA mode (AHB master) and in slave mode (AHB

slave).

The following schema shows the TX data flow:

HRDATA (DMA mode)
9 %2 | datain 32 §
b_.—bu_. .-I—_ HWDATA (slave mode) o
I
TX _FIFO write AHB _FIFO empty <
TX_FIFO rroa] AHBLTXUINT A o] AHB_FIFO
wijte

write write

master_pac_size
counter

|
|
|
|
|
|
|
AHB master FSM AHB slave FSM |
|
|
|
|
|
|

|
|
|
7
:
|
|

AHB_MST_SLV_TX

Figure 5.4.12-1 TX Host Intetface
The block also contains a 16-bit counter (master_pac_size) to monitor the packet size in the DMA mode.

In TX slave mode, the block manages the split response.

astrium scoc

Ref

Issue
Date
Page

:R&D-SOC-NT-292-V-ASTR
:Orev. 2

: 18/06/2003

.53

Description of the TX AHB master FSM

reset

BUSREQ1

BUSREQ2
retry or RD_ADDR
split
error WR_ADDR
pkt
size=0
BUSREQ3
retry or
split or
pkt not RD_DATA
finished
WR_DATA
BUSREQ4

RD_N_PKT_ADDR

WR_N_PKT_ADDR

retry or
split

Figure 5.4.12-2 AHB master FSM

BUSREQI1: bus request

If the DMA is launched, the AHB bus is requested.
Goes to RD_PKT state when the bus is granted.

RD_PKT: reads the packet size

bus
granted

error

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :54

Performs a read access to the packet size.
If HREADY="1", goes to WR_PKT state.

WR_PKT: stores the packet size

If error response, goes to BUSREQ1 state.
If retry or split response, goes to BUSREQ1 state.
If the transfer is OKAY :

if the packet size is null, goes to BUSREQ4 state. Otherwise, memorizes the packet size into the
AHB FIFO then goes to BUSREQ?2.

BUSREQ?2: bus request

Bus requested. If bus granted, goes to RD_ADDR state.

RD ADDR: reads the data address

Performs a read access to retrieve the first data address.
Goes to WR_ADDR state when HREADY="1".

WR _ADDR: memorizes the data address

If error response, goes to BUSREQT1.

If retry or split response, goes to BUSREQ2.

If transfer is OKAY, memorizes the data address.

If the bus is always granted, goes to RD_DATA state, otherwise goes to BUSREQ?3 state.
BUSREQ3: bus request

Bus requested. If bus granted, goes to RD_DATA state.

RD DATA: reads the data value

Performs a read access to retrieve the data.
Goes to WR_DATA when HREADY="1".
WR DATA: stores the data into the AHB FIFO, manages the address pointers
If error response, goes to BUSREQT1.
If retry or split response, goes to BUSREQ3.
If transfer is OKAY, memorizes the data into the AHB FIFO.
If the packet is not finished, goes back to BUSREQ3 state.
Otherwise:
if bus always granted, goes to RD_N_PKT_ADDR state. Otherwise goes to BUSREQ4 state.

BUSREQA4: bus request

Bus requested. If bus granted, goes to RD_N_PKT_ADDR state.

astrium

SCOC

Ref

Issue
Date
Page

:R&D-SOC-NT-292-V-ASTR
:Orev. 2

: 18/06/2003

. 55

RD N PKT ADDR: reads the next packet address

Performs a read access to retrieve the next packet address.

Goes to WR_N_PKT_ADDR state when HREADY="1".

WR N PKT ADDR: memorizes the next packet address

If error response, goes to BUSREQT1.

If retry or split response, goes to BUSREQ4.

If transfer is OKAY, memortizes the next packet address.

The DMA is stopped if the address is null.

Goes to BUSREQ1 state.

Description of the TX AHB slave FSM

reset

ERROR2

Figure 5.4.12-3 AHB slave FSM

SLAVE1: management of single and burst transfer
Generates the first cycle of split response then goes to SPLIT2 state when the AHB FIFO is full.

Generates the first ERROR cycle then goes to ERROR2 state when the transfer request is invalid (wrong

mode, more than 1 master, read request,...).

Handles the split release.

Fills the AHB FIFO when the transfer is valid.

SPLIT2: split response

Generates the second cycle of split response. Then goes to SLAVEL1 state.

ERROR2: error response

Generates the second cycle of error response. Then goes to SLAVET state.

. Ref :R&D-SOC-NT-292-V-ASTR
astrlum SCOC Issue : O rev. 2
Date :18/06/2003
Page :56
5.4.13 AHB_MST_RX block
Input signals description
resetn : asynchronous reset
rx_fifo_dataout(8:0) : data from RX FIFO
rx_fifo_empty : fifo empty flag
areal_valid : areal validity
area2_valid : area2 validity
start_atreal(31:0) : areal start address
start_area2(31:0) : area? start address
mid_ateal(31:0) : areal middle address
mid_area2(31:0) : area2 middle address
end_areal(31:0) : areal end address
end_area2(31:0) : area2 end address
Output signals description
exceed_mem : memory exceeded
rx_fifo_rd : fifo read
amba_error : AMBA error
clear areal wvalid : clear the validity
clear_area2_wvalid . clear the validity
no_area_valid : no valid area detected
cur_buf_end(31:0) : cutrrent buffer end
areal_used : areal is used to store data
area2_used : area? is used to store data
ahb_mst_in : AHB input signals
ahb_mst_out : AHB output signals
The global architecture of the AHB_MST_RX block is shown hereafter:
-r—————_____—_—_———_—— — — — — — — 1
| 32-bit data 32-bit data

| fifo empty

RX_FIFO

fifo read

current packe

9‘bi‘dataa Concatenation
process

status

status

current packe
size

size
load_buf

Pipe line

end_transfer

buf_busy

AHB_MST_RX

RX AHB mst
FSM

Figure 5.4.13-1 RX Host Interface

The Concatenation block contains a FSM to produce the 32-bit data word.

The Concatenation block reads the 9-bit data from the RX FIFO, then produces a 32-bit data word. This
word is stored into the pipeline block when the buf_busy flag is low. This storage asserts the buf_busy

flag.

When the buf_busy flag is asserted, the RX_AHB_mst FSM can read the 32-bit data. When the treatment

is done, the end_transfer signal is asserted to clear the buf_busy flag. So the Concatenation block can load

another 32-bit data word.

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :57

When the buf_busy flag is asserted, the Concatenation block can build the 32-bit data word as long as the
RX FIFO is not empty but can't store it into the pipeline block.

Description of the Concatenation block FSM

RESET

Gooms’
==rs

Figure 5.4.13-2 Concatenation FSM

LOAD_BUFFE

READ _ FIFO: reads the RX FIFO

When the RX FIFO is not empty, the FSM reads the FIFO to complete the 32-bit word.

If the retrieved 9-bit word from the FIFO is an EOP/EEP, the corresponding status is generated then the
FSM goes to LOAD_BUFFER state.

The packet size is incremented when a data has been retrieved from the RX FIFO.
If the 32-bit word is completed, the FSM goes to LOAD_BUFFER state.
LOAD BUFFER: loads the pipeline block

In this state, the FSM loads the pipeline with the 32-bit word, the current status and the current packet
size when the buf_busy signal is low. Then it goes to READ_FIFO state.

Description of the RX AHB master FSM

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :58

RESET

area valid

BUSREQ1 area invalid
data valid

error, split or

retry
response

WR_REQ1

HREADY="1'
error

response or data invalid WR DATA

mid_area error
not reached response or
end of transfer
packet successful

BUSREQ2
bus granted

WR REQZ split or retry

response

HREADY="1'

WR_HEADER

mid_area
reached out of
memory

BUSREQ3
bus granted
retry or split
response WR_REQ3

HREADY="1'

WR_NULL

Figure 5.4.13-3 RX AHB master FSM

INIT MEM: waits for a valid memoty area to load

When areal or area2 is valid, the FSM initializes the area then goes to the BUSREQ1 state.
Otherwise, the no_area_valid signal is asserted and the FSM stays in this state.

BUSREQI1: bus request

If the area is invalid, the FSM goes to INIT_MEM state.
If the transfer is valid (data valid, memory area valid), the AHB bus is requested.
To write a data, the FSM goes to WR_REQT1 state. To write a header, the FSM goes to WR_REQ?2 state.

WR_REQI1: write request

Single transfer requested. Goes to WR_DATA state when HREADY="1",

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :59

WR _DATA: outputs the data value

Waits for the transfer end.
If error, retry or split response, the FSM goes to BUSREQ1 state.
If the transfer is successful:

If end of packet, the FSM goes to BUSREQ?2 state.

If end of memory area, the EXCEED_MEM interrupt is activated then the FSM goes to
BUSREQ?2 state.

Otherwise, the FSM goes to BUSREQ1 state.

BUSREQ?2: bus request

Goes to WR_REQ2 when the bus is granted.

WR REQ2: write request

Single transfer requested to write the header.
Goes to WR_HEADER state when HREADY="1".

WR_HEADER: outputs the header value

Wiaits the transfer end.

If error response, the FSM goes to BUSREQT1 state.

If retry or split response, the FSM goes to BUSREQ?2 state.

If the transfer is okay, the data address is incremented and the current buffer end address is updated.

If the current data address is higher than the area packet end address (area_mid_addr), the FSM goes to
BUSREQ3 state. Otherwise, the FSM goes to BUSREQ1 state.

BUSREQ3: bus request

If no space left, the FSM goes to INIT_MEM state.
Otherwise, the bus is requested to write the null header.
Goes to WR_REQ3 when the bus is granted.

WR REQ3: write request

Single transfer requested to write a null header.
Goes to WR_NULL state when HREADY="1".

WR_NULL: outputs the null header on the data bus

Waits for the transfer end.

If error response, the FSM generates the amba_error interrupt, clears the area validity and goes to
INIT_MEM state.

If retry or split response, the FSM goes to BUSREQ3 state.

- Ref :R&D-SOC-NT-292-V-ASTR
m Issue :Orev. 2
a S t r I u SCOC Date :18/06/2003

Page :60

If the transfer is okay, The FSM clears the area validity then goes to the INIT_MEM state.
5.5 BLOCK WORKING AT INPUT TX CLOCK

5.5.1 CLK _TX_ GEN block

Input signals description

resetn : asynchronous reset
sel : frequency selection between freq_init and freq_run
freq_init(7:0) : frequency at initialization state
freq_run(7:0) : frequency at run state
tx_max_en : TX max frequency enable
Output signal description
clk_txout : TX clock used for the transmission

The architecture of the block is shown hereafter:

freq_init
enable | clk_txout
-bi =0 ?]
freq_run 8-bit counter 1 counter=0 ? }‘_
9
sel
clk_txin

clk_txin

b Q

Y=

Figure 5.5.1-1 TX clock generation

The internal clk_tx signal changes its value each time the counter value is 0.
The clock selection between clk_tx and clk_txin is done by the tx_max signal.

To avoid any glitch on the clk_txout signal, the tx_max signal is updated on clock falling edge while the
clk_tx signal is updated on clock rising edge.

Yo Yo

	SCOPE
	DOCUMENTS AND ACRONYMS
	APPLICABLE DOCUMENTS
	REFERENCE DOCUMENTS
	ACRONYMS

	FUNCTIONAL DESCRIPTION
	GLOBAL FUNCTIONALITY DESCRIPTION
	Description of the different blocks
	Introduction of the interfaces
	Link initialization
	Transmission function
	Reception function

	FUNCTIONAL MODE DESCRIPTION
	DETAILED FUNCTIONALITY DESCRIPTION
	TX clock programming
	TX Host Interface \⠀吀䠀䤀尩
	TX DMA mode
	TX slave mode

	RX Host Interface \⠀刀䠀䤀尩
	The format of the storage
	The functionality of the RHI
	Reaching the End_Packet Address
	Reaching the End_Area Address
	AHB error occurrence
	Advice

	Format of the words stored in the TX and RX FIFOs:
	The interrupts
	Time Code transmission and reception
	Test mode

	INTERNAL REGISTER DESCRIPTION
	Global description
	Detailed description

	INTERFACE DESCRIPTION
	Clocks, test and reset
	APB interface
	TX AHB master interface
	TX AHB slave interface
	RX AHB master interface
	Link interface
	Time interface
	Interrupt interface

	PERFORMANCE
	ARCHITECTURE DESCRIPTION
	DESCRIPTION OF THE RESET TREES
	BLOCKS WORKING AT TX CLOCK
	CLK_TX_GEN block
	DS_GEN block
	TX_SHIFT_REG block
	TX_SELECT block
	TX_CNT block
	TX_ACK block
	TX_RESYNC block

	BLOCKS WORKING AT RX CLOCK
	RX_SHIFTREG block
	RX_DECOD block
	RX_RESYNC block
	DISCONNECTION block

	BLOCKS WORKING AT SYSTEM CLOCK
	INIT_FSM block
	DELAY_CNT block
	RX_MGT block
	RX_FIFO block
	TX_FIFO block
	AHB_FIFO block
	TX_MGT block
	SW_COUNTERS block
	SW_RESYNC block
	SW_REG block
	AHB_TX_INT block
	AHB_MST_SLV_TX block
	AHB_MST_RX block

	BLOCK WORKING AT INPUT TX CLOCK
	CLK_TX_GEN block

